奄美大島の打ち上げ貝類

鈴木 明彦**1**・園谷 昴史**2**

Molluscs drifted on the coast of Amami-Oshima Island, Amami Islands, southwestern Japan

Akihiko SUZUKI**1** and Takaumi ENYA**2**

Abstract

Molluscs drifted on the coast of Amami-Oshima in Amami Islands were examined. Drifted shells were collected from twenty sites at ebb tide in late January 2017 and 2018. The Amami-Oshima mollusc fauna is composed of 177 species of shelled molluscs, 60 bivalves and 117 gastropods. The fauna is also dominated by rocky-shore species such as Barbata fisca, Chama japonica, Nerita albicilla, Strombus luhuanus etc. The fauna contains many coral reef elements such as Tridacna maxima, Cypraea annulus and C. moneta. From the specific composition, the fauna is convincingly assigned to tropical marine climate.

Key words: Amami islands, Amami-Oshima Island, drifted shells, Mollusca, warm-water species

はじめに

奄美群島の島々は、東シナ海側では黒潮の影響を直接受けており、自然海岸が比較的に打ち上げ貝類の研究には適している。今回、筆者らは奄美大島において、打ち上げ貝類を調査・検討する機会を得たので、その生態学的・生物地理学的特徴について報告する。

調査地域の概要

奄美大島は、奄美群島最大の島で、鹿児島県の南部に位置する（Fig. 1）。外周約461km、面積約712㎢の島で、最高点は標高694mの湯湾岳である（鹿児島県1968）。本島の中部〜南部は、一般に山地が海岸線までせまり、周囲は切り立った海食崖である。一方、北部の笠利海岸では山地が低く断丘地形が発達し、海岸はなんだらかである（鹿児島県1968）。

奄美大島は黒潮の通過する地点に位置する。黒潮の本流は、奄美群島の西側約100kmで北東方向にかかって進んでいる。また、黒潮本流の流速は毎時2〜2.5ノットで、奄美大島の北約100kmのトカラ海峡で東進し、種子島の南側で転向して足摺岬を目指し北進しており、世界的にみても海洋の西側が強化された非常に強い暖流である（鹿児島県1968）。

奄美大島付近の海面水温は、年平均値は24.0℃と高い。夏期の海面水温は日射量が多いため、さらに

1 〒002-8502 札幌市北区あいの里5-3-1 北海道大学札幌校地学研究室
1 Department of Earth Science, Sapporo Campus, Hokkaido University of Education, 5-3-1 Ainosato, Kita-ku, Sapporo 002-8502, Japan
2 〒040-0006 札幌市厚別区厚別町小野幌53-2 北海道博物館
2 Hokkaido Museum, 53-2 Konopporo, Atsubetsu-cho, Atsubetsu-ku, Sapporo 040-0006, Japan

高くなる。また、冬季でも22～23℃と水温がさほど低下しないため、この海域では高い海面水温の影響で暖流系の魚類が豊富である。この水温は造礁サンゴの生息環境にも適し、約80属のサンゴが生息している（鹿児島県 1968）。海面水温は8月に29.0℃で最も高く、2月に20.0℃で最低くなる。常に黒潮の影響を受けているため、気候は1年を通じて温暖な亜熱帯気候に相当し、島内低地での年平均気温は21.3℃である（鹿児島県 1968）。

奄美大島の沿岸には、土盛海岸（Fig. 2A）などで代表される砂浜海岸が見られるが、その端はサンゴ礁からなることも多い。また、岬や海食崖などの突端部には、あやまる海岸（Fig. 2B）などのサンゴ礁海岸が発達している。これらの海岸やサンゴ礁海岸の汀線上には、貝類以外では漂着果実・種子などの南方系漂着物が確認された。

調査地点・調査方法

2017年1月29日～31日及び2018年1月29日～31日に、奄美大島を一周して、打ち上げ貝類の調査を行った（Fig. 1）。今回調査を行ったのは、用、あやまる、土盛、大瀬、矢田、富田、神の子、手広、ヤドリ浜、清水、白浜、屋純、タエン浜、鶴越、ヒエン浜、国直、大浜、朝仁、倉崎、崎原の計20地点の海岸である。

各調査地点の海岸において、汀線約200mを約1時間間で、確認した貝類遺骸をできるかぎり採取した。採取した貝類は洗浄・乾燥したあと、主に図鑑類（奥谷 2000, 2004; 行田 2000）に基づいて同定を行い、その個体数を記録した。

まず打ち上げ貝類の生息底質別の種群構造を検討した。生息底質とは、対象となる貝類が主に生息している海域の底質（肥後・後藤, 1993）の事である。本論では、採集された貝類の生息底質を鈴木・園谷（2014）を参照して、岩礁（R）、サンゴ礁（C）、砂礁（SG）、砂（S）、細砂（FS）、砂泥（SM）、泥
Fig. 3 Representative molluscan species of drifted shells of Amami-Oshima.
（M）の7種類に区分した。
次に打ち上げ貝類の分布的差異の種数比を検討した。対象となる貝類の主な地理的分布（肥後・後藤 1993）に着目すると、日本列島周辺の貝類は、太平洋側において熟続以南に生息する暖流系種（W）、太平洋側において熟続以北に生息する寒流系種（C）、暖流寒流両地域に生息する広温種（WC）に区分できる（鈴木・園谷 2014）。

結果
今回の調査で奄美大島から採取された打ち上げ貝類は、二枚貝類60種、巻貝類117種の計177種である（Table 1）。二枚貝では、特にアカガイ科（Arcidae）、マルスゲガイ科（Veneridae）が顕著であった（Fig. 3）。一方、巻貝では、アマオブナガイ科（Neritidae）、タカラガイ科（Cypraeidae）、イモガイ科（Conidae）がいずれも優勢であった（Fig. 3）。
また、打ち上げ貝類はいずれも潮間帯から上部浅海帯に生息する種類で、下部浅海帯以深の種類は含まれていない。一方、これら地点ごとに見ると、用で15種、あやまるで24種、土盛で23種、大瀬で18種、節田で28種、用安で36種、神の子で20種、手広で22種、ヤドリ浜で15種、清水で21種、白浜で33種、屋鈴で40種、ダエン浜で26種、船越で43種、ヒエン浜で24種、国直で38種、大浜で37種、朝仁で31種、倉崎で27種、崎原で18種が、それぞれ採取された。
打ち上げ貝類の生息底質別の種数比（Fig. 4）について報告する。打ち上げ貝類の生息底質は、岩礁（R）は68.2%、サンゴ礁（C）は7.6%、砂礫（SG）は4.7%、砂（S）は12.4%、細砂（FS）、石泥（SM）、泥（M）はわずかであった。調査地点のうち、あやまる、大瀬、節田、用安、神の子等は、いずれもサンゴ礁海岸である。一方、調査対象の多くは砂浜海岸であるが、その端はサンゴ礁が見られることが多い。
打ち上げ貝類の生物地理分布別の種数比（Fig. 5）を示す。前述の地理分布の区分に従うと、奄美大島の打ち上げ貝類は暖流系種と広温種から構成されており、両者の比率は暖流系種93.9%、広温種6.1%であった。

考察
奄美大島から、二枚貝類60種、巻貝類117種の計177種の打ち上げ貝類が確認された（Table 1）。

![Habitat substrate](image1)

Fig.4 Ratio of habitat substrate of drifted shells of Amami-Oshima.

![Biogeographic distribution](image2)

Fig.5 Ratio of biogeographic distribution of drifted shells of Amami-Oshima.

貝類の生息底質別の種数比（Fig. 4）をみると、採取地点が岩礁に囲まれた海岸であることを反映して、岩礁種が68%を超える高い頻度を示した。次に砂底種やサンゴ礁種が優勢であった。これらはいずれも潮間帯から上部浅海帯に生息する種である。また、奄美大島は外洋性の海洋環境であるが、地形学的には海岸にはサンゴ礁が発達しているため、外洋性の種類が海岸に打ち上げられにくいのであろう。サンゴ礁海岸ではいずれの産地でも、岩礁種やサンゴ礁種が卓越しており、その次に砂浜底種や砂底種が認められた。それに対して、砂浜海岸では岩礁種が優勢なものので、砂底種の頻度が高く、次いで砂礫底、サンゴ礁種も認められた。
今回採集された計177種の貝類（Table 1）は、黒潮の影響が強い南西諸島に普遍的な種類（黒田
Table 1. List of drifted shells of Amami-Oshima

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Japanese name</th>
<th>Habitat Substrate</th>
<th>Biogeographic distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bivalvia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arca ventricosa</td>
<td>オキタカノハガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Arca avellana</td>
<td>フネガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Anadara antiqua</td>
<td>リュウキュウサルポウ</td>
<td>SM</td>
<td>W</td>
</tr>
<tr>
<td>Barbatia fusca</td>
<td>ペニガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Barbatia lima</td>
<td>エガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Barbatia lacrata</td>
<td>オサエノエガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Barbatia sp.</td>
<td>エガイ類</td>
<td>R</td>
<td>—</td>
</tr>
<tr>
<td>Glycymeris reevei</td>
<td>ツマサケガイ</td>
<td>SM</td>
<td>W</td>
</tr>
<tr>
<td>Glycymeris sp.</td>
<td>ツマサケガイ類</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>ムラサキガイ</td>
<td>R</td>
<td>WC</td>
</tr>
<tr>
<td>Septifer sp.</td>
<td>イノタガイ類</td>
<td>R</td>
<td>—</td>
</tr>
<tr>
<td>Pinctada maculata</td>
<td>ミドリアオリ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Isognomon epilobium</td>
<td>マクガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Isognomon sp.</td>
<td>マクガイ類</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Peuten albicans</td>
<td>イタガイ类</td>
<td>S</td>
<td>WC</td>
</tr>
<tr>
<td>Serratula gardineri</td>
<td>シゼウタテ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Spondylus barbatus</td>
<td>ウミガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Spondylus cruentus</td>
<td>ツリピタオ</td>
<td>R</td>
<td>WC</td>
</tr>
<tr>
<td>Spondylus nicobaricus</td>
<td>ショウジウカザラ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Spondylus sp.</td>
<td>ウミガイ類</td>
<td>R</td>
<td>—</td>
</tr>
<tr>
<td>Crassostrea gigas</td>
<td>マガバ</td>
<td>R</td>
<td>WC</td>
</tr>
<tr>
<td>Crassostrea sp.</td>
<td>マガバ類</td>
<td>R</td>
<td>—</td>
</tr>
<tr>
<td>Codakia tigrina</td>
<td>サツガイ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Codakia paytonorum</td>
<td>ウラresponseData</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Codakia punctata</td>
<td>クヒベニツキガイ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Chama dunkeri</td>
<td>キザルガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Chama japonica</td>
<td>キザルガイ類</td>
<td>R</td>
<td>WC</td>
</tr>
<tr>
<td>Chama sp.</td>
<td>キザルガイ類</td>
<td>R</td>
<td>—</td>
</tr>
<tr>
<td>Pseudochama retroversa</td>
<td>ヌルカサナ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Cardita variegata</td>
<td>クロฟタマガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Limaria basilamica</td>
<td>コキノガイ</td>
<td>SG</td>
<td>W</td>
</tr>
<tr>
<td>Nipponocrasatella sp.</td>
<td>モシオガヤ類</td>
<td>SG</td>
<td>—</td>
</tr>
<tr>
<td>Vasticardium flavum</td>
<td>リュウキュウザルウ</td>
<td>FS</td>
<td>W</td>
</tr>
<tr>
<td>Vasticardium sp.</td>
<td>サルガイ類</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fulvia macta</td>
<td>トリガイ</td>
<td>SM</td>
<td>W</td>
</tr>
<tr>
<td>Fragum unedo</td>
<td>カワガイ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Tridacna crocea</td>
<td>ヒメジャガイ</td>
<td>C</td>
<td>W</td>
</tr>
<tr>
<td>Tridacna maximae</td>
<td>シラナミガイ</td>
<td>C</td>
<td>W</td>
</tr>
<tr>
<td>Tridacna squamosa</td>
<td>ヒレハコガイ</td>
<td>C</td>
<td>W</td>
</tr>
<tr>
<td>Tridacna sp.</td>
<td>ヒコガイ類</td>
<td>C</td>
<td>W</td>
</tr>
<tr>
<td>Tellinella virga</td>
<td>ニッコウガイ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Cyclostellina remes</td>
<td>モチヅザラ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Quinquepugus palatam</td>
<td>リュウキュウシラトリ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Scutacarpagia scobinata</td>
<td>サザラマ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Asaphis violacens</td>
<td>リュウキュウマスオ</td>
<td>SG</td>
<td>W</td>
</tr>
<tr>
<td>Soletellina diphos</td>
<td>ムラサキガイ</td>
<td>M</td>
<td>W</td>
</tr>
<tr>
<td>Trizeum bicarinatum</td>
<td>メキシマガイ類</td>
<td>SG</td>
<td>W</td>
</tr>
<tr>
<td>Periglypta reticulata</td>
<td>アラスモトギ</td>
<td>SG</td>
<td>W</td>
</tr>
<tr>
<td>Perygyptra puperea</td>
<td>ムシガイ</td>
<td>S</td>
<td>—</td>
</tr>
<tr>
<td>Gafrarium divaricatum</td>
<td>ケマンガイ</td>
<td>SG</td>
<td>W</td>
</tr>
<tr>
<td>Cyclina sinensis</td>
<td>オキシジミ</td>
<td>FS</td>
<td>W</td>
</tr>
<tr>
<td>Lithicea castrensis</td>
<td>マルオツナエシ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Lithicea philippinarum</td>
<td>イナズママスレ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Lithicea fastigiata</td>
<td>サラガイ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Bonartemas historio</td>
<td>オイナガガイ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Callista pilsby</td>
<td>コマガヤマスレ</td>
<td>FS</td>
<td>W</td>
</tr>
<tr>
<td>Mactra chinesis</td>
<td>バカガイ</td>
<td>SM</td>
<td>WC</td>
</tr>
<tr>
<td>Tapes literatus</td>
<td>リュウキュウアサリ</td>
<td>S</td>
<td>W</td>
</tr>
<tr>
<td>Raditapes philippinarum</td>
<td>アサリ</td>
<td>SG</td>
<td>WC</td>
</tr>
<tr>
<td>Raditapes variagatus</td>
<td>ヒメアサリ</td>
<td>SG</td>
<td>W</td>
</tr>
</tbody>
</table>

(Gastropoda)

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Japanese name</th>
<th>Habitat Substrate</th>
<th>Biogeographic distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellana grata</td>
<td>ベッコウガイ</td>
<td>R</td>
<td>WC</td>
</tr>
<tr>
<td>Cellana testudinaria</td>
<td>オベッコウガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Japanese name</td>
<td>Habitat Substrate</td>
<td>Biogeographic distribution</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Scutellastra flexuosa</td>
<td>ツタンハガイ</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Patelloïda saccharina</td>
<td>リュウキュウウノアシ</td>
<td>R W</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Patelloïda striata</td>
<td>リュウキュウオオガイ</td>
<td>R W</td>
<td>1 2</td>
</tr>
<tr>
<td>Halioïta varia</td>
<td>イボアマガネ</td>
<td>R W</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Halioïta ovina</td>
<td>マナハガイ</td>
<td>R W</td>
<td>1 1 1 2 1 1</td>
</tr>
<tr>
<td>Trochus maximus</td>
<td>ヤラタマユリ</td>
<td>R W</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Trochus stellatus</td>
<td>ムラタマユリ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Trochus maculatus</td>
<td>ニシタマユリ</td>
<td>R W</td>
<td>2 1 1 1 2 3 3 10 1</td>
</tr>
<tr>
<td>Tectus comus</td>
<td>ベニシリガナ</td>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>Monodonta labio</td>
<td>オキナワンイシタマ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Monodonta confusa</td>
<td>インダマ</td>
<td>R W C</td>
<td>1</td>
</tr>
<tr>
<td>Monodonta canalifera</td>
<td>ハナダマ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Chrysopea paradoxorum</td>
<td>サラサマ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Turbo marmoratus</td>
<td>ヤゴワガイ</td>
<td>R W</td>
<td>2 2 1 2 2</td>
</tr>
<tr>
<td>Turbo petelatus</td>
<td>リュウテン</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Turbo argirostrumus</td>
<td>チョウセンシサエ</td>
<td>R W</td>
<td>1 1 1 2 2</td>
</tr>
<tr>
<td>Turbo stenogyrus</td>
<td>コシタカサエ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Turbo sp.</td>
<td>サエ類</td>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>Nerita albicilla</td>
<td>アマオブネガイ</td>
<td>R W</td>
<td>1 1 1 2 1 9 17 8 6 1 11 3 1 3 1 3</td>
</tr>
<tr>
<td>Nerita picata</td>
<td>キバアマガイ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Nerita polita</td>
<td>ニシキアマオブネ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Nerita incerta</td>
<td>エナメルアマガイ</td>
<td>R W</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Nerita costata</td>
<td>ハツシジマアマガイ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Nerita squamosata</td>
<td>マルアマオブネ</td>
<td>R W</td>
<td>1 1 1 18 1</td>
</tr>
<tr>
<td>Nerita sp.</td>
<td>アマオブネガイ類</td>
<td>R W</td>
<td>1 2</td>
</tr>
<tr>
<td>Neritopsis radula</td>
<td>アマガイモドキ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Batillaria multiformis</td>
<td>ホソウミナ</td>
<td>M W</td>
<td>18</td>
</tr>
<tr>
<td>Hipponix trigona</td>
<td>スズメガイ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Trivirostra oryza</td>
<td>シラタマガイ</td>
<td>S W</td>
<td>1</td>
</tr>
<tr>
<td>Cerithium nodulosum</td>
<td>オリンスゴイ</td>
<td>C W</td>
<td>2</td>
</tr>
<tr>
<td>Cerithium columna</td>
<td>コオリンスゴイ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Rhinoclavis sinensis</td>
<td>トウガタカエリ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Strombus dentatus</td>
<td>ミツユビガイ</td>
<td>R W</td>
<td>2</td>
</tr>
<tr>
<td>Strombus mutabilis</td>
<td>ムカタモト</td>
<td>R W</td>
<td>1 1 3 2 2 2</td>
</tr>
<tr>
<td>Strombus luhananus</td>
<td>マギワガイ</td>
<td>R W 15</td>
<td>4 7 3 1 12 20 9 5 6 30 1 2 1 1 2 1 1</td>
</tr>
<tr>
<td>Lambis lambis</td>
<td>スイジガイ</td>
<td>S W</td>
<td>1 2 4</td>
</tr>
<tr>
<td>Lambis sp.</td>
<td>スイジガイ類</td>
<td>S W</td>
<td>1</td>
</tr>
<tr>
<td>Vasmum ceramicum</td>
<td>オニブンガイ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Niotha sp.</td>
<td>ムロガイ類</td>
<td>- W</td>
<td>1</td>
</tr>
<tr>
<td>Serpulorbis imbricatus</td>
<td>オオヘビガイ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Serpulorbus sp.</td>
<td>ヘビガイ類</td>
<td>R</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>Planaxis sulcatus</td>
<td>ゴマフナ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Mammilla melanostoma</td>
<td>リスガイ</td>
<td>S W</td>
<td>1 1 2</td>
</tr>
<tr>
<td>Naticarius alaphaopollinis</td>
<td>フロガイ</td>
<td>FS W</td>
<td>1</td>
</tr>
<tr>
<td>Euspira fortunei</td>
<td>サキグロマツマタ</td>
<td>M W C</td>
<td>1</td>
</tr>
<tr>
<td>Cypraea anulus</td>
<td>ハナビラガクラ</td>
<td>C W</td>
<td>4 8 3 8 4 1 8 2 5 1 5 3 4</td>
</tr>
<tr>
<td>Cypraea capitapenerpes</td>
<td>ハナマルユキ</td>
<td>R W 1 4 1 1 1 2 3 2 1 8 2 2 4 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Cypraea moneta</td>
<td>キイロウガクラ</td>
<td>C W 3 1</td>
<td>2 1 1 2 1 3 2 2</td>
</tr>
<tr>
<td>Cypraea tigris</td>
<td>オシグウガクラ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Cypraea aselus</td>
<td>ウタダクラ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Cypraea carnea</td>
<td>クヒムラタキダクラ</td>
<td>R W</td>
<td>1 1 2 1 1 1</td>
</tr>
<tr>
<td>Cypraea arabica</td>
<td>ヤキシンタキダクラ</td>
<td>R W 3 2 1 2</td>
<td>1 1 1 3 2</td>
</tr>
<tr>
<td>Cypraea helvora</td>
<td>カモノダクラ</td>
<td>R W</td>
<td>2 2</td>
</tr>
<tr>
<td>Cypraea lynx</td>
<td>ヒメホシダクラ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Cypraea talpa</td>
<td>ダタダクラ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Cypraea ecrina</td>
<td>クモノダクラ</td>
<td>R W 1 1 1 2 2 2</td>
<td></td>
</tr>
<tr>
<td>Cypraea onyx</td>
<td>クチャグロウガクラ</td>
<td>R W</td>
<td>1 1 2</td>
</tr>
<tr>
<td>Cypraea vitellus</td>
<td>ホシキヌタ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Cypraea quadrinuculata</td>
<td>ヨッサダクラ</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Cypraea bistriatodota</td>
<td>コゲドリタダクラ</td>
<td>R W 3 2 3 2</td>
<td></td>
</tr>
<tr>
<td>Cypraea nucleus</td>
<td>イボダクラ</td>
<td>R W</td>
<td>3 1</td>
</tr>
<tr>
<td>Cypraea sp.</td>
<td>ダタカガイ類</td>
<td>R W 1 1 1 1 1 1 3 2</td>
<td></td>
</tr>
<tr>
<td>Cypraea sp.</td>
<td>ダタカガイ類</td>
<td>R W 1 1 1 1 1 1 3 2</td>
<td></td>
</tr>
<tr>
<td>Charonia tritonis</td>
<td>ホダガイ</td>
<td>C W 1</td>
<td></td>
</tr>
<tr>
<td>Pleuroloca trapezium</td>
<td>イトマキガロ</td>
<td>R W 1</td>
<td></td>
</tr>
<tr>
<td>Phalium sp.</td>
<td>カザガタイ類</td>
<td>R W</td>
<td>1</td>
</tr>
<tr>
<td>Scientific name</td>
<td>Japanese name</td>
<td>Habitat Substrate</td>
<td>Biogeographic distribution</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Tonno perdix</td>
<td>ウズラガイ</td>
<td>S</td>
<td>W 1 1 2</td>
</tr>
<tr>
<td>Mancinella tuberosa</td>
<td>ツノレイ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Mancinella hippocastanum</td>
<td>ツノテツレイシ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Morula maëva</td>
<td>シマレイ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Drosa morum</td>
<td>ムラサキレイ</td>
<td>C</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Drupella ehrenbergi</td>
<td>ニセロレイ</td>
<td>C</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Drupella concatenata</td>
<td>チクベニレイ</td>
<td>C</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Thais armigera</td>
<td>シラクモガイ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Thais sp.</td>
<td>レイシガイ類</td>
<td>R</td>
<td>W 1</td>
</tr>
<tr>
<td>Bursa dunkeri</td>
<td>オキニシ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Chicoreus brunnus</td>
<td>ガンゼキボラ</td>
<td>C</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Cymatium hepatitis</td>
<td>ジュセイラ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Pleuroloca trapezium</td>
<td>イトマキボラ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Pteropurpura sp.</td>
<td>ヨウラク類</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Cymatium hepatitis</td>
<td>ジュセイラ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Distorsio anus</td>
<td>シマイボラ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Distorsio sp.</td>
<td>イボラ類</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Telasca gaudiosus</td>
<td>ヒメヨフバイ</td>
<td>FS</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Pyrene tyleriæ</td>
<td>マツムシ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Mitra eremitanus</td>
<td>コゲダ</td>
<td>C</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Zieriliana siervogelli</td>
<td>テツヤクテ</td>
<td>SG</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Cymatium nicobaricum</td>
<td>ミツカドボラ</td>
<td>SG</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Colubraria cunningii</td>
<td>ヒモカラセコバイ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Strigellata retusa</td>
<td>オジンマヤタテ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Eogina mendicaria</td>
<td>ノボガイ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Nebularia sp.</td>
<td>フデガイ類</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Comus ebraeus</td>
<td>マダライモ</td>
<td>R</td>
<td>W 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus flavids</td>
<td>キヌカツギイモ</td>
<td>R</td>
<td>W 2 3 2 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus lividus</td>
<td>イボリマモ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus leopards</td>
<td>クロアモキ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus miliaris</td>
<td>サヤタモイ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus magnus</td>
<td>ヤツイモ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus pulicarius</td>
<td>ゴマフィモ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus vitulus</td>
<td>サラサヒナシモドキ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus legatus</td>
<td>キンランイモ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus panperculus</td>
<td>ペニイモ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus exilium</td>
<td>カバミナシ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus tulipa</td>
<td>シロアングイナ</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus sp. 1</td>
<td>イモガイ類</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Comus sp. 2</td>
<td>イモガイ類</td>
<td>R</td>
<td>W 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Oliva annulata</td>
<td>サママビナ</td>
<td>S</td>
<td>W 2 1 2</td>
</tr>
<tr>
<td>Oliva sericea</td>
<td>オオジドウマクラ</td>
<td>S</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Oliva intricata</td>
<td>タカサゴビナ</td>
<td>S</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Subula sp.</td>
<td>タケノコガイ類</td>
<td>S</td>
<td>W 2 1 2</td>
</tr>
<tr>
<td>Janthina janthina</td>
<td>アサガオガイ</td>
<td>—</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Janthina umbilicata</td>
<td>ヒメリガイ</td>
<td>W</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Bulla verrucosa</td>
<td>ナツガイ</td>
<td>R</td>
<td>W 1 1 1</td>
</tr>
<tr>
<td>Siphonaria lacinioides</td>
<td>コウダカラサマガイ</td>
<td>R</td>
<td>W 2 1 2 1 1 3 4 4 20 4 3 1</td>
</tr>
<tr>
<td>Siphonaria siringa</td>
<td>キクノハナガイ</td>
<td>R</td>
<td>W 2 1 2 1 1 3 4 4 20 4 3 1</td>
</tr>
</tbody>
</table>

Number in the list shows individuals.

また、海水温の高低を示す「生物種度計」を用いな
されるタカラガイ科は、奄美群島では65種が確認さ
れている（小笠原 1993：Ogasawara 1994）。今回打
ち上げ貝として、ハナビラダラ、ハナビラユキ、キ
イロダラ、ホシダラ、ウキダラ、クチムラサキダラ、ヤクノマダラ、カモノダラ、ヒメホシダラ、タルダラ、コモノダラ、クチグロキスナ、ホシキスナ、ヨツメダラ、ゴゲチドリダラ、イボダラなど18種が確認された。

同様の〈生物種度計〉のイモガイ科は奄美群島で
は91種が確認されている（小笠原 1993；Ogasawara
1994）。今回、マグロイモ、キナカツキイモ、イボ
イモイモ、クロフグモドキ、サガタイモ、ヤキイモ、
ゴマフイモ、サラサラササドキ、キンランイモ、
ベニイモ、カバミナシ、シロアノボナなど15種が
確認された。

このようない特徴に基づくと、奄美大島の打ち上
げ貝類は、海洋生物地理学的には大半が暖流系種で占
める熱帯海洋生物地理区（西村 1981）に属す
ることは考えられる。なお、奄美群岛に於ける各島の打
ち上げ貝の生物地理的差異に関する検討は、今後の
課題としたい。

謝辞：本研究を進めるにあたり、日本学術振興会
科学研究費補助金（基盤研究（C）16K01002）を使用
したので、記して御礼申し上げる。

引用文献
波部忠重・土屋光太郎 1998、阿嘉島周辺海域軟体動物目録肉
どりいし（9）：15-25。
肥後俊一 1974、奄美群島産肉類目録 68pp、九州貝類談
話会、長崎。
肥後俊一・増藤芳夫 1993、日本及び周辺地域軟体動物総
目録 693pp、エル貝類出版局、八尾。
塚越周雄 1981、熱帯性沿岸海域における地域生態系の中
でのマングローブと珊瑚礁との立地関係ならびに西太平洋域
の海洋生物地理、化石 30：105-120。
Kato, M. 1989. Change in the composition of molluscan shell as-
semble washed up on the shore in Amami Island, Japan.
Contributions from the biological laboratory, Kyoto University,
27: 217-231。
鹿児島県 1968、奄美群島自然公園予定地基本調査、東京公
園センター調査報告 5: 1-382。
久保保文・黒住準 1995、生態／環境調査、沖縄の海の貝・
陸の貝、263pp、沖縄出版、那覇。

黑田恵来 1928、奄美大島産貝類目録 126pp、鹿児島県教
育委員会、鹿児島。
黑田恵来 1960、沖縄産貝類目録 104pp、琉球大学教務部
普及課、那覇。
名和 純 2008、琉球列島の干潟貝類相 1、奄美諸島、西
部市宮田科学研究 4：1-42。
西村三郎 1981、地球の海と生態 28pp、海鳴社、東京。
岡本一志 1988、沖縄産海洋生物図鑑－貝－ 104pp、新星図
書出版、那覇。
小笠原康則四郎 1993、シンポジウム「新世代化岩石物種度計
の試み－その論理と適用－」の背景と課題、化石 54：11-23。
Ogasawara, K. 1994. Neogene paleogeography and marine cli-
mate of the Japanese Islands based on shallow-marine molluscs.
Paleogeography, Paleoecology, Palaeoclimatology, Paleoecology,
108: 335-351。
奥谷道司 2000、日本近海産貝類図鑑 1186pp、東海大学出
版会、東京。
奥谷道司 2004、改訂新版 世界文化生物大図鑑 貝類、
399pp、世界文化社、東京。
鈴木明彦 2004、沖縄県瀬底の打ち上げ貝類（子備）、環
境教育研究 7：43-47。
鈴木明彦・園谷昭史 2014、奄美群島と論島の打ち上げ貝類、
漂着物学芸誌 12：21-27。
鈴木明彦・園谷昭史 2015a、奄美群島喜界島の打ち上げ貝
類、漂着物学芸誌 13：9-14。
鈴木明彦・園谷昭史 2015b、奄美群島沖永良部島の打ち
上げ貝類、漂着物学芸誌 13：27-33。
鈴木明彦・園谷昭史 2016、奄美群島津島の打ち上げ貝類、
漂着物学芸誌 14：15-22。
土田英治・黒住準 1997、奄美群島津島の、山の海岸の貝
類－特に外洋性砂浜群集－、ちばっぱん 27：75-81。
ウルマ貝類調査グループ 2003、沖縄県北東岸のサンゴ礁性
貝類相の現状調査、ブロ・ナトウラ・ファンド助成成果
報告書、12：17-31。
行田義三 2000、鹿児島の貝、228pp、春苑堂出版、鹿児島。
(Rceived Aug. 30, 2018; accepted Oct. 15, 2018)